PAMELI: A Meta-Algorithm for Computationally Expensive Multi-Objective Optimization Problems
Authors: Santiago Cuervo, Miguel Melgarejo, Angie Blanco-Cañon, Laura Reyes-Fajardo, Sergio Rojas-Galeano
Abstract: We present an algorithm for multi-objective optimization of computationally expensive problems. The proposed algorithm is based on solving a set of surrogate problems defined by models of the real one, so that only solutions estimated to be approximately Pareto-optimal are evaluated using the real expensive functions. Aside of the search for solutions, our algorithm also performs a meta-search for optimal surrogate models and navigation strategies for the optimization landscape, therefore adapting the search strategy for solutions to the problem as new information about it is obtained. The competitiveness of our approach is demonstrated by an experimental comparison with one state-of-the-art surrogate-assisted evolutionary algorithm on a set of benchmark problems.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.