Machine Learning the period finding algorithm
Authors: John George Francis, Anil Shaji
Abstract: We use differentiable programming and gradient descent to find unitary matrices that can be used in the period finding algorithm to extract period information from the state of a quantum computer post application of the oracle. The standard procedure is to use the inverse quantum Fourier transform. Our findings suggest that that this is not the only unitary matrix appropriate for the period finding algorithm, There exist several unitary matrices that can affect out the same transformation and they are significantly different from each other as well. These unitary matrices can be learned by an algorithm. Neural networks can be applied to differentiate such unitary matrices from randomly generated ones indicating that these unitaries do have characteristic features that cannot otherwise be discerned easily.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.