DeepThermal: Combustion Optimization for Thermal Power Generating Units Using Offline Reinforcement Learning

Authors: Xianyuan Zhan, Haoran Xu, Yue Zhang, Xiangyu Zhu, Honglei Yin, Yu Zheng

Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI2022)

Abstract: Optimizing the combustion efficiency of a thermal power generating unit (TPGU) is a highly challenging and critical task in the energy industry. We develop a new data-driven AI system, namely DeepThermal, to optimize the combustion control strategy for TPGUs. At its core, is a new model-based offline reinforcement learning (RL) framework, called MORE, which leverages historical operational data of a TGPU to solve a highly complex constrained Markov decision process problem via purely offline training. In DeepThermal, we first learn a data-driven combustion process simulator from the offline dataset. The RL agent of MORE is then trained by combining real historical data as well as carefully filtered and processed simulation data through a novel restrictive exploration scheme. DeepThermal has been successfully deployed in four large coal-fired thermal power plants in China. Real-world experiments show that DeepThermal effectively improves the combustion efficiency of TPGUs. We also report the superior performance of MORE by comparing with the state-of-the-art algorithms on the standard offline RL benchmarks.

Submitted to arXiv on 23 Feb. 2021

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.