Silent Data Corruptions at Scale

Authors: Harish Dattatraya Dixit, Sneha Pendharkar, Matt Beadon, Chris Mason, Tejasvi Chakravarthy, Bharath Muthiah, Sriram Sankar

8 pages, 3 figures, 33 references

Abstract: Silent Data Corruption (SDC) can have negative impact on large-scale infrastructure services. SDCs are not captured by error reporting mechanisms within a Central Processing Unit (CPU) and hence are not traceable at the hardware level. However, the data corruptions propagate across the stack and manifest as application-level problems. These types of errors can result in data loss and can require months of debug engineering time. In this paper, we describe common defect types observed in silicon manufacturing that leads to SDCs. We discuss a real-world example of silent data corruption within a datacenter application. We provide the debug flow followed to root-cause and triage faulty instructions within a CPU using a case study, as an illustration on how to debug this class of errors. We provide a high-level overview of the mitigations to reduce the risk of silent data corruptions within a large production fleet. In our large-scale infrastructure, we have run a vast library of silent error test scenarios across hundreds of thousands of machines in our fleet. This has resulted in hundreds of CPUs detected for these errors, showing that SDCs are a systemic issue across generations. We have monitored SDCs for a period longer than 18 months. Based on this experience, we determine that reducing silent data corruptions requires not only hardware resiliency and production detection mechanisms, but also robust fault-tolerant software architectures.

Submitted to arXiv on 22 Feb. 2021

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.