Measuring solar neutrinos over Gigayear timescales with Paleo Detectors
Authors: Natalia Tapia Arellano, Shunsaku Horiuchi
Abstract: Measuring the solar neutrino flux over gigayear timescales could provide a new window to inform the Solar Standard Model as well as studies of the Earth's long-term climate. We demonstrate the feasibility of measuring the time-evolution of the $^8$B solar neutrino flux over gigayear timescales using paleo detectors, naturally occurring minerals which record neutrino-induced recoil tracks over geological times. We explore suitable minerals and identify track lengths of 15--30 nm to be a practical window to detect the $^8$B solar neutrino flux. A collection of ultra-radiopure minerals of different ages, each some 0.1 kg by mass, can be used to probe the rise of the $^8$B solar neutrino flux over the recent gigayear of the Sun's evolution. We also show that models of the solar abundance problem can be distinguished based on the time-integrated tracks induced by the $^8$B solar neutrino flux.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.