No Subclass Left Behind: Fine-Grained Robustness in Coarse-Grained Classification Problems

Authors: Nimit S. Sohoni, Jared A. Dunnmon, Geoffrey Angus, Albert Gu, Christopher Ré

40 pages. Published as a conference paper at NeurIPS 2020

Abstract: In real-world classification tasks, each class often comprises multiple finer-grained "subclasses." As the subclass labels are frequently unavailable, models trained using only the coarser-grained class labels often exhibit highly variable performance across different subclasses. This phenomenon, known as hidden stratification, has important consequences for models deployed in safety-critical applications such as medicine. We propose GEORGE, a method to both measure and mitigate hidden stratification even when subclass labels are unknown. We first observe that unlabeled subclasses are often separable in the feature space of deep neural networks, and exploit this fact to estimate subclass labels for the training data via clustering techniques. We then use these approximate subclass labels as a form of noisy supervision in a distributionally robust optimization objective. We theoretically characterize the performance of GEORGE in terms of the worst-case generalization error across any subclass. We empirically validate GEORGE on a mix of real-world and benchmark image classification datasets, and show that our approach boosts worst-case subclass accuracy by up to 22 percentage points compared to standard training techniques, without requiring any prior information about the subclasses.

Submitted to arXiv on 25 Nov. 2020

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.