The Cayley graphs associated with some quasi-perfect Lee codes are Ramanujan graphs

Authors: Khodakhast Bibak, Bruce M. Kapron, Venkatesh Srinivasan

IEEE Transactions on Information Theory 62 (2016), 6355-6358

Abstract: Let $\Z_n[i]$ be the ring of Gaussian integers modulo a positive integer $n$. Very recently, Camarero and Mart\'{i}nez [IEEE Trans. Inform. Theory, {\bf 62} (2016), 1183--1192], showed that for every prime number $p>5$ such that $p\equiv \pm 5 \pmod{12}$, the Cayley graph $\mathcal{G}_p=\textnormal{Cay}(\Z_p[i], S_2)$, where $S_2$ is the set of units of $\Z_p[i]$, induces a 2-quasi-perfect Lee code over $\Z_p^m$, where $m=2\lfloor \frac{p}{4}\rfloor$. They also conjectured that $\mathcal{G}_p$ is a Ramanujan graph for every prime $p$ such that $p\equiv 3 \pmod{4}$. In this paper, we solve this conjecture. Our main tools are Deligne's bound from 1977 for estimating a particular kind of trigonometric sum and a result of Lov\'{a}sz from 1975 (or of Babai from 1979) which gives the eigenvalues of Cayley graphs of finite Abelian groups. Our proof techniques may motivate more work in the interactions between spectral graph theory, character theory, and coding theory, and may provide new ideas towards the famous Golomb--Welch conjecture on the existence of perfect Lee codes.

Submitted to arXiv on 12 Oct. 2020

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.