Emora: An Inquisitive Social Chatbot Who Cares For You

Authors: Sarah E. Finch (Jason), James D. Finch (Jason), Ali Ahmadvand (Jason), Ingyu (Jason), Choi, Xiangjue Dong, Ruixiang Qi, Harshita Sahijwani, Sergey Volokhin, Zihan Wang, Zihao Wang, Jinho D. Choi

Published in 3rd Proceedings of Alexa Prize (Alexa Prize 2019)

Abstract: Inspired by studies on the overwhelming presence of experience-sharing in human-human conversations, Emora, the social chatbot developed by Emory University, aims to bring such experience-focused interaction to the current field of conversational AI. The traditional approach of information-sharing topic handlers is balanced with a focus on opinion-oriented exchanges that Emora delivers, and new conversational abilities are developed that support dialogues that consist of a collaborative understanding and learning process of the partner's life experiences. We present a curated dialogue system that leverages highly expressive natural language templates, powerful intent classification, and ontology resources to provide an engaging and interesting conversational experience to every user.

Submitted to arXiv on 10 Sep. 2020

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.