Popularity Prediction for Social Media over Arbitrary Time Horizons

Authors: Daniel Haimovich, Dima Karamshuk, Thomas J. Leeper, Evgeniy Riabenko, Milan Vojnovic

International Conference on Very Large Data Bases (VLDB'2022)

Abstract: Predicting the popularity of social media content in real time requires approaches that efficiently operate at global scale. Popularity prediction is important for many applications, including detection of harmful viral content to enable timely content moderation. The prediction task is difficult because views result from interactions between user interests, content features, resharing, feed ranking, and network structure. We consider the problem of accurately predicting popularity both at any given prediction time since a content item's creation and for arbitrary time horizons into the future. In order to achieve high accuracy for different prediction time horizons, it is essential for models to use static features (of content and user) as well as observed popularity growth up to prediction time. We propose a feature-based approach based on a self-excited Hawkes point process model, which involves prediction of the content's popularity at one or more reference horizons in tandem with a point predictor of an effective growth parameter that reflects the timescale of popularity growth. This results in a highly scalable method for popularity prediction over arbitrary prediction time horizons that also achieves a high degree of accuracy, compared to several leading baselines, on a dataset of public page content on Facebook over a two-month period, covering billions of content views and hundreds of thousands of distinct content items. The model has shown competitive prediction accuracy against a strong baseline that consists of separately trained models for specific prediction time horizons.

Submitted to arXiv on 04 Sep. 2020

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.