Can You Read Me Now? Content Aware Rectification using Angle Supervision
Authors: Amir Markovitz, Inbal Lavi, Or Perel, Shai Mazor, Roee Litman
Abstract: The ubiquity of smartphone cameras has led to more and more documents being captured by cameras rather than scanned. Unlike flatbed scanners, photographed documents are often folded and crumpled, resulting in large local variance in text structure. The problem of document rectification is fundamental to the Optical Character Recognition (OCR) process on documents, and its ability to overcome geometric distortions significantly affects recognition accuracy. Despite the great progress in recent OCR systems, most still rely on a pre-process that ensures the text lines are straight and axis aligned. Recent works have tackled the problem of rectifying document images taken in-the-wild using various supervision signals and alignment means. However, they focused on global features that can be extracted from the document's boundaries, ignoring various signals that could be obtained from the document's content. We present CREASE: Content Aware Rectification using Angle Supervision, the first learned method for document rectification that relies on the document's content, the location of the words and specifically their orientation, as hints to assist in the rectification process. We utilize a novel pixel-wise angle regression approach and a curvature estimation side-task for optimizing our rectification model. Our method surpasses previous approaches in terms of OCR accuracy, geometric error and visual similarity.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.