Language Modelling for Source Code with Transformer-XL

Authors: Thomas Dowdell, Hongyu Zhang

License: CC BY 4.0

Abstract: It has been found that software, like natural language texts, exhibits "naturalness", which can be captured by statistical language models. In recent years, neural language models have been proposed to represent the naturalness of software through deep learning. In this paper, we conduct an experimental evaluation of state-of-the-art neural language models for source code, including RNN-based models and Transformer-XL based models. Through experiments on a large-scale Python code corpus, we find that the Transformer-XL model outperforms RNN-based models (including LSTM and GRU models) in capturing the naturalness of software, with far less computational cost.

Submitted to arXiv on 31 Jul. 2020

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.