Machine Learning and Control Theory

Authors: Alain Bensoussan, Yiqun Li, Dinh Phan Cao Nguyen, Minh-Binh Tran, Sheung Chi Phillip Yam, Xiang Zhou

Abstract: We survey in this article the connections between Machine Learning and Control Theory. Control Theory provide useful concepts and tools for Machine Learning. Conversely Machine Learning can be used to solve large control problems. In the first part of the paper, we develop the connections between reinforcement learning and Markov Decision Processes, which are discrete time control problems. In the second part, we review the concept of supervised learning and the relation with static optimization. Deep learning which extends supervised learning, can be viewed as a control problem. In the third part, we present the links between stochastic gradient descent and mean-field theory. Conversely, in the fourth and fifth parts, we review machine learning approaches to stochastic control problems, and focus on the deterministic case, to explain, more easily, the numerical algorithms.

Submitted to arXiv on 10 Jun. 2020

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.