Guidelines for the Search Strategy to Update Systematic Literature Reviews in Software Engineering

Authors: Claes Wohlin, Emilia Mendes, Katia Romero Felizardo, Marcos Kalinowski

Author version of manuscript accepted for publication at the Information and Software Technology Journal

Abstract: Context: Systematic Literature Reviews (SLRs) have been adopted within Software Engineering (SE) for more than a decade to provide meaningful summaries of evidence on several topics. Many of these SLRs are now potentially not fully up-to-date, and there are no standard proposals on how to update SLRs in SE. Objective: The objective of this paper is to propose guidelines on how to best search for evidence when updating SLRs in SE, and to evaluate these guidelines using an SLR that was not employed during the formulation of the guidelines. Method: To propose our guidelines, we compare and discuss outcomes from applying different search strategies to identify primary studies in a published SLR, an SLR update, and two replications in the area of effort estimation. These guidelines are then evaluated using an SLR in the area of software ecosystems, its update and a replication. Results: The use of a single iteration forward snowballing with Google Scholar, and employing as a seed set the original SLR and its primary studies is the most cost-effective way to search for new evidence when updating SLRs. Furthermore, the importance of having more than one researcher involved in the selection of papers when applying the inclusion and exclusion criteria is highlighted through the results. Conclusions: Our proposed guidelines formulated based upon an effort estimation SLR, its update and two replications, were supported when using an SLR in the area of software ecosystems, its update and a replication. Therefore, we put forward that our guidelines ought to be adopted for updating SLRs in SE.

Submitted to arXiv on 09 Jun. 2020

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.