How Many Freemasons Are There? The Consensus Voting Mechanism in Metric Spaces

Authors: Mashbat Suzuki, Adrian Vetta

Abstract: We study the evolution of a social group when admission to the group is determined via consensus or unanimity voting. In each time period, two candidates apply for membership and a candidate is selected if and only if all the current group members agree. We apply the spatial theory of voting where group members and candidates are located in a metric space and each member votes for its closest (most similar) candidate. Our interest focuses on the expected cardinality of the group after $T$ time periods. To evaluate this we study the geometry inherent in dynamic consensus voting over a metric space. This allows us to develop a set of techniques for lower bounding and upper bounding the expected cardinality of a group. We specialize these methods for two-dimensional metric spaces. For the unit ball the expected cardinality of the group after $T$ time periods is $\Theta(T^{1/8})$. In sharp contrast, for the unit square the expected cardinality is at least $\Omega(\ln T)$ but at most $O(\ln T \cdot \ln\ln T )$.

Submitted to arXiv on 26 May. 2020

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.