Intent Mining from past conversations for Conversational Agent

Authors: Ajay Chatterjee, Shubhashis Sengupta

8 pages, 2 figures
License: CC BY 4.0

Abstract: Conversational systems are of primary interest in the AI community. Chatbots are increasingly being deployed to provide round-the-clock support and to increase customer engagement. Many of the commercial bot building frameworks follow a standard approach that requires one to build and train an intent model to recognize a user input. Intent models are trained in a supervised setting with a collection of textual utterance and intent label pairs. Gathering a substantial and wide coverage of training data for different intent is a bottleneck in the bot building process. Moreover, the cost of labeling a hundred to thousands of conversations with intent is a time consuming and laborious job. In this paper, we present an intent discovery framework that involves 4 primary steps: Extraction of textual utterances from a conversation using a pre-trained domain agnostic Dialog Act Classifier (Data Extraction), automatic clustering of similar user utterances (Clustering), manual annotation of clusters with an intent label (Labeling) and propagation of intent labels to the utterances from the previous step, which are not mapped to any cluster (Label Propagation); to generate intent training data from raw conversations. We have introduced a novel density-based clustering algorithm ITER-DBSCAN for unbalanced data clustering. Subject Matter Expert (Annotators with domain expertise) manually looks into the clustered user utterances and provides an intent label for discovery. We conducted user studies to validate the effectiveness of the trained intent model generated in terms of coverage of intents, accuracy and time saving concerning manual annotation. Although the system is developed for building an intent model for the conversational system, this framework can also be used for a short text clustering or as a labeling framework.

Submitted to arXiv on 22 May. 2020

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.