Local Geometry of the rough-smooth interface in the two-periodic Aztec diamond

Authors: Vincent Beffara, Sunil Chhita, Kurt Johansson

50 pages, 7 figures

Abstract: Random tilings of the two-periodic Aztec diamond contain three macroscopic regions: frozen, where the tilings are deterministic; rough, where the correlations between dominoes decay polynomially; smooth, where the correlations between dominoes decay exponentially. In a previous paper, the authors found that a certain averaging of height function differences at the rough-smooth interface converged to the extended Airy kernel point process. In this paper, we augment the local geometrical picture at this interface by introducing well-defined lattice paths which are closely related to the level lines of the height function. We show, after suitable centering and rescaling, that a point process from these paths converge to the extended Airy kernel point process provided that the natural parameter associated to the two-periodic Aztec diamond is small enough.

Submitted to arXiv on 29 Apr. 2020

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.