A Review of Vibration-Based Damage Detection in Civil Structures: From Traditional Methods to Machine Learning and Deep Learning Applications

Authors: Onur Avci, Osama Abdeljaber, Serkan Kiranyaz, Mohammed Hussein, Moncef Gabbouj, Daniel J. Inman

51 pages, 45 figures, MSSP (Elsevier) submission

Abstract: Monitoring structural damage is extremely important for sustaining and preserving the service life of civil structures. While successful monitoring provides resolute and staunch information on the health, serviceability, integrity and safety of structures; maintaining continuous performance of a structure depends highly on monitoring the occurrence, formation and propagation of damage. Damage may accumulate on structures due to different environmental and human-induced factors. Numerous monitoring and detection approaches have been developed to provide practical means for early warning against structural damage or any type of anomaly. Considerable effort has been put into vibration-based methods, which utilize the vibration response of the monitored structure to assess its condition and identify structural damage. Meanwhile, with emerging computing power and sensing technology in the last decade, Machine Learning (ML) and especially Deep Learning (DL) algorithms have become more feasible and extensively used in vibration-based structural damage detection with elegant performance and often with rigorous accuracy. While there have been multiple review studies published on vibration-based structural damage detection, there has not been a study where the transition from traditional methods to ML and DL methods are described and discussed. This paper aims to fulfill this gap by presenting the highlights of the traditional methods and provide a comprehensive review of the most recent applications of ML and DL algorithms utilized for vibration-based structural damage detection in civil structures.

Submitted to arXiv on 09 Apr. 2020

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.