When to Talk: Chatbot Controls the Timing of Talking during Multi-turn Open-domain Dialogue Generation

Authors: Tian Lan, Xianling Mao, Heyan Huang, Wei Wei

10 pages, 1 figure

Abstract: Despite the multi-turn open-domain dialogue systems have attracted more and more attention and made great progress, the existing dialogue systems are still very boring. Nearly all the existing dialogue models only provide a response when the user's utterance is accepted. But during daily conversations, humans always decide whether to continue to utter an utterance based on the context. Intuitively, a dialogue model that can control the timing of talking autonomously based on the conversation context can chat with humans more naturally. In this paper, we explore the dialogue system that automatically controls the timing of talking during the conversation. Specifically, we adopt the decision module for the existing dialogue models. Furthermore, modeling conversation context effectively is very important for controlling the timing of talking. So we also adopt the graph neural networks to process the context with the natural graph structure. Extensive experiments on two benchmarks show that controlling the timing of talking can effectively improve the quality of dialogue generation, and the proposed methods significantly improve the accuracy of the timing of talking. In addition, we have publicly released the codes of our proposed model.

Submitted to arXiv on 20 Dec. 2019

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.