An Informatics-based Approach to Identify Key Pharmacological Components in Drug-Drug Interactions

Authors: Jianyuan Deng, Fusheng Wang

arXiv: 1912.02964v1 - DOI (q-bio.QM)
Accepted to AMIA 2020 Informatics Summit

Abstract: Drug-drug interactions (DDI) can cause severe adverse drug reactions and pose a major challenge to medication therapy. Recently, informatics-based approaches are emerging for DDI studies. In this paper, we aim to identify key pharmacological components in DDI based on large-scale data from DrugBank, a comprehensive DDI database. With pharmacological components as features, logistic regression is used to perform DDI classification with a focus on searching for most predictive features, a process of identifying key pharmacological components. Using univariate feature selection with chi-squared statistic as the ranking criteria, our study reveals that top 10% features can achieve comparable classification performance compared to that using all features. The top 10% features are identified to be key pharmacological components. Furthermore, their importance is quantified by feature coefficients in the classifier, which measures the DDI potential and provides a novel perspective to evaluate pharmacological components.

Submitted to arXiv on 06 Dec. 2019

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.