Model-Based Reinforcement Learning with Adversarial Training for Online Recommendation
Authors: Xueying Bai, Jian Guan, Hongning Wang
Abstract: Reinforcement learning is well suited for optimizing policies of recommender systems. Current solutions mostly focus on model-free approaches, which require frequent interactions with the real environment, and thus are expensive in model learning. Offline evaluation methods, such as importance sampling, can alleviate such limitations, but usually request a large amount of logged data and do not work well when the action space is large. In this work, we propose a model-based reinforcement learning solution which models user-agent interaction for offline policy learning via a generative adversarial network. To reduce bias in the learned model and policy, we use a discriminator to evaluate the quality of generated data and scale the generated rewards. Our theoretical analysis and empirical evaluations demonstrate the effectiveness of our solution in learning policies from the offline and generated data.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.