Identifying supportive student factors for mindset interventions: A two-model machine learning approach

Authors: Nigel Bosch

28 pages, 4 figures, 3 tables

Abstract: Growth mindset interventions foster students' beliefs that their abilities can grow through effort and appropriate strategies. However, not every student benefits from such interventions - yet research identifying which student factors support growth mindset interventions is sparse. In this study, we utilized machine learning methods to predict growth mindset effectiveness in a nationwide experiment in the U.S. with over 10,000 students. These methods enable analysis of arbitrarily-complex interactions between combinations of student-level predictor variables and intervention outcome, defined as the improvement in grade point average (GPA) during the transition to high school. We utilized two separate machine learning models: one to control for complex relationships between 51 student-level predictors and GPA, and one to predict the change in GPA due to the intervention. We analyzed the trained models to discover which features influenced model predictions most, finding that prior academic achievement, blocked navigations (attempting to navigate through the intervention software too quickly), self-reported reasons for learning, and race/ethnicity were the most important predictors in the model for predicting intervention effectiveness. As in previous research, we found that the intervention was most effective for students with prior low academic achievement. Unique to this study, we found that blocked navigations predicted an intervention effect as low as 0.185 GPA points (on a 0-4 scale) less than the mean. This was a notable negative prediction given that the mean intervention effect in our sample was just 0.026 GPA points, though few students (4.4%) experienced a substantial number of blocked navigation events. We also found that some minoritized students were predicted to benefit less (or even not at all) from the intervention.

Submitted to arXiv on 29 Sep. 2019

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.