Tracking Behavioral Patterns among Students in an Online Educational System

Authors: Stephan Lorenzen, Niklas Hjuler, Stephen Alstrup

In Proceedings of the 11'th International Conference on Educational Data Mining (EDM), p. 280-285. 2018

Abstract: Analysis of log data generated by online educational systems is an essential task to better the educational systems and increase our understanding of how students learn. In this study we investigate previously unseen data from Clio Online, the largest provider of digital learning content for primary schools in Denmark. We consider data for 14,810 students with 3 million sessions in the period 2015-2017. We analyze student activity in periods of one week. By using non-negative matrix factorization techniques, we obtain soft clusterings, revealing dependencies among time of day, subject, activity type, activity complexity (measured by Bloom's taxonomy), and performance. Furthermore, our method allows for tracking behavioral changes of individual students over time, as well as general behavioral changes in the educational system. Based on the results, we give suggestions for behavioral changes, in order to optimize the learning experience and improve performance.

Submitted to arXiv on 21 Aug. 2019

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.