Theory of Impedance Spectroscopy for Lithium Batteries
Authors: Fabian Single, Birger Horstmann, Arnulf Latz
Abstract: In this article, we derive and discuss a physics-based model for impedance spectroscopy of lithium batteries. Our model for electrochemical cells with planar electrodes takes into account the solid-electrolyte interphase (SEI) as porous surface film. We present two improvements over standard impedance models. Firstly, our model is based on a consistent description of lithium transport through electrolyte and SEI. We use well-defined transport parameters, e.g., transference numbers, and consider convection of the center-of-mass. Secondly, we solve our model equations analytically and state the full transport parameter dependence of the impedance signals. Our consistent model results in an analytic expression for the cell impedance including bulk and surface processes. The impedance signals due to concentration polarizations highlight the importance of electrolyte convection in concentrated electrolytes. We simplify our expression for the complex impedance and compare it to common equivalent circuit models. Such simplified models are good approximations in concise parameter ranges. Finally, we compare our model with experiments of lithium metal electrodes and find large transference numbers for lithium ions. This analysis reveals that lithium-ion transport through the SEI has solid electrolyte character.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.