Learning Wear Patterns on Footwear Outsoles Using Convolutional Neural Networks

Authors: Xavier Francis, Hamid Sharifzadeh, Angus Newton, Nilufar Baghaei, Soheil Varastehpour

Abstract: Footwear outsoles acquire characteristics unique to the individual wearing them over time. Forensic scientists largely rely on their skills and knowledge, gained through years of experience, to analyse such characteristics on a shoeprint. In this work, we present a convolutional neural network model that can predict the wear pattern on a unique dataset of shoeprints that captures the life and wear of a pair of shoes. We present an additional architecture able to reconstruct the outsole back to its original state on a given week, and provide empirical evaluations of the performance of both models.

Submitted to arXiv on 28 Jul. 2019

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.