Evaluating Explanation Without Ground Truth in Interpretable Machine Learning

Authors: Fan Yang, Mengnan Du, Xia Hu

Abstract: Interpretable Machine Learning (IML) has become increasingly important in many real-world applications, such as autonomous cars and medical diagnosis, where explanations are significantly preferred to help people better understand how machine learning systems work and further enhance their trust towards systems. However, due to the diversified scenarios and subjective nature of explanations, we rarely have the ground truth for benchmark evaluation in IML on the quality of generated explanations. Having a sense of explanation quality not only matters for assessing system boundaries, but also helps to realize the true benefits to human users in practical settings. To benchmark the evaluation in IML, in this article, we rigorously define the problem of evaluating explanations, and systematically review the existing efforts from state-of-the-arts. Specifically, we summarize three general aspects of explanation (i.e., generalizability, fidelity and persuasibility) with formal definitions, and respectively review the representative methodologies for each of them under different tasks. Further, a unified evaluation framework is designed according to the hierarchical needs from developers and end-users, which could be easily adopted for different scenarios in practice. In the end, open problems are discussed, and several limitations of current evaluation techniques are raised for future explorations.

Submitted to arXiv on 16 Jul. 2019

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.