Coupled-Projection Residual Network for MRI Super-Resolution
Authors: Chun-Mei Feng, Kai Wang, Shijian Lu, Yong Xu, Heng Kong, Ling Shao
Abstract: Magnetic Resonance Imaging(MRI) has been widely used in clinical application and pathology research by helping doctors make more accurate diagnoses. On the other hand, accurate diagnosis by MRI remains a great challenge as images obtained via present MRI techniques usually have low resolutions. Improving MRI image quality and resolution thus becomes a critically important task. This paper presents an innovative Coupled-Projection Residual Network (CPRN) for MRI super-resolution. The CPRN consists of two complementary sub-networks: a shallow network and a deep network that keep the content consistency while learning high frequency differences between low-resolution and high-resolution images. The shallow sub-network employs coupled-projection for better retaining the MRI image details, where a novel feedback mechanism is introduced to guide the reconstruction of high-resolution images. The deep sub-network learns from the residuals of the high-frequency image information, where multiple residual blocks are cascaded to magnify the MRI images at the last network layer. Finally, the features from the shallow and deep sub-networks are fused for the reconstruction of high-resolution MRI images. For effective fusion of features from the deep and shallow sub-networks, a step-wise connection (CPRN S) is designed as inspired by the human cognitive processes (from simple to complex). Experiments over three public MRI datasets show that our proposed CPRN achieves superior MRI super-resolution performance as compared with the state-of-the-art. Our source code will be publicly available at http://www.yongxu.org/lunwen.html.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.