Sequential estimation of quantiles with applications to A/B-testing and best-arm identification
Authors: Steven R. Howard, Aaditya Ramdas
Abstract: We propose confidence sequences -- sequences of confidence intervals which are valid uniformly over time -- for quantiles of any distribution over a complete, fully-ordered set, based on a stream of i.i.d. observations. We give methods both for tracking a fixed quantile and for tracking all quantiles simultaneously. Specifically, we provide explicit expressions with small constants for intervals whose widths shrink at the fastest possible $\sqrt{t^{-1} \log\log t}$ rate, along with a non-asymptotic concentration inequality for the empirical distribution function which holds uniformly over time with the same rate. The latter strengthens Smirnov's empirical process law of the iterated logarithm and extends the Dvoretzky-Kiefer-Wolfowitz inequality to hold uniformly over time. We give a new algorithm and sample complexity bound for selecting an arm with an approximately best quantile in a multi-armed bandit framework. In simulations, our method requires fewer samples than existing methods by a factor of five to fifty.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.