Fusion vectors: Embedding Graph Fusions for Efficient Unsupervised Rank Aggregation

Authors: Icaro Cavalcante Dourado, Ricardo da Silva Torres

Abstract: The vast increase in amount and complexity of digital content led to a wide interest in ad-hoc retrieval systems in recent years. Complementary, the existence of heterogeneous data sources and retrieval models stimulated the proliferation of increasingly ingenious and effective rank aggregation functions. Although recently proposed rank aggregation functions are promising with respect to effectiveness, existing proposals in the area usually overlook efficiency aspects. We propose an innovative rank aggregation function that is unsupervised, intrinsically multimodal, and targeted for fast retrieval and top effectiveness performance. We introduce the concepts of embedding and indexing of graph-based rank-aggregation representation models, and their application for search tasks. Embedding formulations are also proposed for graph-based rank representations. We introduce the concept of fusion vectors, a late-fusion representation of objects based on ranks, from which an intrinsically rank-aggregation retrieval model is defined. Next, we present an approach for fast retrieval based on fusion vectors, thus promoting an efficient rank aggregation system. Our method presents top effectiveness performance among state-of-the-art related work, while bringing novel aspects of multimodality and effectiveness. Consistent speedups are achieved against the recent baselines in all datasets considered.

Submitted to arXiv on 14 Jun. 2019

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.