Trend-Based Networking Driven by Big Data Telemetry for SDN and Traditional Networks

Authors: Ankur Jain, Arohi Gupta, Ashutosh Gupta, Dewang Gedia, Leidy Pérez, Levi Perigo, Rahil Gandotra, Sanjay Murthy

International Journal of Next-Generation Networks (IJNGN) Vol.11, No.1, March 2019

Abstract: Organizations face a challenge of accurately analyzing network data and providing automated action based on the observed trend. This trend-based analytics is beneficial to minimize the downtime and improve the performance of the network services, but organizations use different network management tools to understand and visualize the network traffic with limited abilities to dynamically optimize the network. This research focuses on the development of an intelligent system that leverages big data telemetry analysis in Platform for Network Data Analytics (PNDA) to enable comprehensive trend-based networking decisions. The results include a graphical user interface (GUI) done via a web application for effortless management of all subsystems, and the system and application developed in this research demonstrate the true potential for a scalable system capable of effectively benchmarking the network to set the expected behavior for comparison and trend analysis. Moreover, this research provides a proof of concept of how trend analysis results are actioned in both a traditional network and a software-defined network (SDN) to achieve dynamic, automated load balancing.

Submitted to arXiv on 23 Apr. 2019

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.