Doubly Nonlinear Superconducting Qubit

Authors: Dat Thanh Le, Arne Grimsmo, Clemens Müller, T. M. Stace

Phys. Rev. A 100, 062321 (2019)
arXiv: 1904.01843v2 - DOI (quant-ph)
Close to the published version

Abstract: We describe a superconducting circuit consisting of a Josephson junction in parallel with a quantum phase slip wire, which implements a Hamiltonian that is periodic in both charge and flux. This Hamiltonian is exactly diagonalisable in a double-Bloch band, and the eigenstates are shown to be code states of the Gottesman-Kitaev-Preskill quantum error correcting code. The eigenspectrum has several critical points, where the linear sensitivity to external charge and flux noise vanishes. The states at these critical points thus hold promise as qubit states that are insensitive to external noise sources.

Submitted to arXiv on 03 Apr. 2019

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.