Symmetry Breaking in Coupled SYK or Tensor Models

Authors: Jaewon Kim, Igor R. Klebanov, Grigory Tarnopolsky, Wenli Zhao

Phys. Rev. X 9, 021043 (2019)
37 pages, v2: some improvements, references added. v3: added a discussion of separation of spectra into sectors and an Appendix on zero-energy states. The version to appear in Physical Review X

Abstract: We study a large $N$ tensor model with $O(N)^3$ symmetry containing two flavors of Majorana fermions, $\psi_1^{abc}$ and $\psi_2^{abc}$. We also study its random counterpart consisting of two coupled Sachdev-Ye-Kitaev models, each one containing $N_{\rm SYK}$ Majorana fermions. In these models we assume tetrahedral quartic Hamiltonians which depend on a real coupling parameter $\alpha$. We find a duality relation between two Hamiltonians with different values of $\alpha$, which allows us to restrict the model to the range of $-1\leq \alpha\leq 1/3$. The scaling dimension of the fermion number operator $Q=i\psi_1^{abc} \psi_2^{abc}$ is complex and of the form $1/2 +i f(\alpha)$ in the range $-1\leq \alpha<0$, indicating an instability of the conformal phase. Using Schwinger-Dyson equations to solve for the Green functions, we show that in the true low-temperature phase this operator acquires an expectation value. This demonstrates the breaking of an anti-unitary particle-hole symmetry and other discrete symmetries. We also calculate spectra of the coupled SYK models for values of $N_{\rm SYK}$ where exact diagonalizations are possible. For negative $\alpha$ we find a gap separating the two lowest energy states from the rest of the spectrum; this leads to exponential decay of the zero-temperature correlation functions. For $N_{\rm SYK}$ divisible by $4$, the two lowest states have a small splitting. They become degenerate in the large $N_{\rm SYK}$ limit, as expected from the spontaneous breaking of a $\mathbb{Z}_2$ symmetry.

Submitted to arXiv on 06 Feb. 2019

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.