A Rprop-Neural-Network-Based PV Maximum Power Point Tracking Algorithm with Short-Circuit Current Limitation
Authors: Yao Cui, Zhehan Yi, Jiajun Duan, Di Shi, Zhiwei Wang
Abstract: This paper proposes a resilient-backpropagation-neural-network-(Rprop-NN) based algorithm for Photovoltaic (PV) maximum power point tracking (MPPT). A supervision mechanism is proposed to calibrate the Rprop-NN-MPPT reference and limit short-circuit current caused by incorrect prediction. Conventional MPPT algorithms (e.g., perturb and observe (P&O), hill climbing, and incremental conductance (Inc-Cond) etc.) are trial-and-error-based, which may result in steady-state oscillations and loss of tracking direction under fast-changing ambient environment. In addition, partial shading is also a challenge due to the difficulty of finding the global maximum power point on a multi-peak characteristic curve. As an attempt to address the aforementioned issues, a novel Rprop-NN MPPT algorithm is developed and elaborated in this work. Multiple case studies are carried out to verify the effectiveness of the proposed algorithm.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.