Artificial Intelligence-Defined 5G Radio Access Networks
Authors: Miao Yao, Munawwar Sohul, Vuk Marojevic, Jeffrey H. Reed
Abstract: Massive multiple-input multiple-output antenna systems, millimeter wave communications, and ultra-dense networks have been widely perceived as the three key enablers that facilitate the development and deployment of 5G systems. This article discusses the intelligent agent in 5G base station which combines sensing, learning, understanding and optimizing to facilitate these enablers. We present a flexible, rapidly deployable, and cross-layer artificial intelligence (AI)-based framework to enable the imminent and future demands on 5G and beyond infrastructure. We present example AI-enabled 5G use cases that accommodate important 5G-specific capabilities and discuss the value of AI for enabling beyond 5G network evolution.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.