Towards a context-dependent numerical data quality evaluation framework
Authors: Milen S. Marev, Ernesto Compatangelo, Wamberto Vasconcelos
Abstract: This paper focuses on numeric data, with emphasis on distinct characteristics like varying significance, unstructured format, mass volume and real-time processing. We propose a novel, context-dependent valuation framework specifically devised to assess quality in numeric datasets. Our framework uses eight relevant data quality dimensions, and provide a simple metric to evaluate dataset quality along each dimension. We argue that the proposed set of dimensions and corresponding metrics adequately captures the unique quality antipatterns that are typically associated with numerical data. The introduction of our framework is part of a wider research effort that aims at developing an articulated numerical data quality improvement approach for Oil and Gas exploration and production workflows that is based on artificial intelligence techniques.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.