Technology Assisted Reviews: Finding the Last Few Relevant Documents by Asking Yes/No Questions to Reviewers

Authors: Jie Zou, Dan Li, Evangelos Kanoulas

This paper is accepted by SIGIR 2018

Abstract: The goal of a technology-assisted review is to achieve high recall with low human effort. Continuous active learning algorithms have demonstrated good performance in locating the majority of relevant documents in a collection, however their performance is reaching a plateau when 80\%-90\% of them has been found. Finding the last few relevant documents typically requires exhaustively reviewing the collection. In this paper, we propose a novel method to identify these last few, but significant, documents efficiently. Our method makes the hypothesis that entities carry vital information in documents, and that reviewers can answer questions about the presence or absence of an entity in the missing relevance documents. Based on this we devise a sequential Bayesian search method that selects the optimal sequence of questions to ask. The experimental results show that our proposed method can greatly improve performance requiring less reviewing effort.

Submitted to arXiv on 12 Oct. 2018

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.