Local Interpretable Model-agnostic Explanations of Bayesian Predictive Models via Kullback-Leibler Projections

Authors: Tomi Peltola

Extended abstract/short paper, Proceedings of the 2nd Workshop on Explainable Artificial Intelligence (XAI 2018) at IJCAI/ECAI 2018

Abstract: We introduce a method, KL-LIME, for explaining predictions of Bayesian predictive models by projecting the information in the predictive distribution locally to a simpler, interpretable explanation model. The proposed approach combines the recent Local Interpretable Model-agnostic Explanations (LIME) method with ideas from Bayesian projection predictive variable selection methods. The information theoretic basis helps in navigating the trade-off between explanation fidelity and complexity. We demonstrate the method in explaining MNIST digit classifications made by a Bayesian deep convolutional neural network.

Submitted to arXiv on 05 Oct. 2018

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.