Towards Learning Fine-Grained Disentangled Representations from Speech
Authors: Yuan Gong, Christian Poellabauer
Abstract: Learning disentangled representations of high-dimensional data is currently an active research area. However, compared to the field of computer vision, less work has been done for speech processing. In this paper, we provide a review of two representative efforts on this topic and propose the novel concept of fine-grained disentangled speech representation learning.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.