Morse Code Datasets for Machine Learning

Authors: Sourya Dey, Keith M. Chugg, Peter A. Beerel

in 9th International Conference on Computing, Communication and Networking Technologies (ICCCNT), pp. 1-7, Jul 2018
Presented at the 9th International Conference on Computing, Communication and Networking Technologies (ICCCNT)

Abstract: We present an algorithm to generate synthetic datasets of tunable difficulty on classification of Morse code symbols for supervised machine learning problems, in particular, neural networks. The datasets are spatially one-dimensional and have a small number of input features, leading to high density of input information content. This makes them particularly challenging when implementing network complexity reduction methods. We explore how network performance is affected by deliberately adding various forms of noise and expanding the feature set and dataset size. Finally, we establish several metrics to indicate the difficulty of a dataset, and evaluate their merits. The algorithm and datasets are open-source.

Submitted to arXiv on 11 Jul. 2018

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.