Thermally driven convection in Li||Bi liquid metal batteries

Authors: Paolo Personnettaz, Pascal Beckstein, Steffen Landgraf, Thomas Köllner, Michael Nimtz, Norbert Weber, Tom Weier

Journal of Power Sources 401 (2018), 362-374
arXiv: 1805.11521v1 - DOI (physics.flu-dyn)

Abstract: Liquid Metal Batteries (LMBs) are a promising concept for cheap electrical energy storage at grid level. These are built as a stable density stratification of three liquid layers, with two liquid metals separated by a molten salt. In order to ensure a safe and efficient operation, the understanding of transport phenomena in LMBs is essential. With this motivation we study thermal convection induced by internal heat generation. We consider the electrochemical nature of the cell in order to define the heat balance and the operating parameters. Moreover we develop a simple 1D heat conduction model as wellas a fully 3D thermo-fluid dynamics model. The latter is implemented in the CFD library OpenFOAM, extending the volume of fluid solver, and validated against a pseudo-spectral code. Both models are used to study a rectangular 10x10 cm Li||Bi LMB cell at three different states of charge.

Submitted to arXiv on 29 May. 2018

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.