Object Detection in Equirectangular Panorama

Authors: Wenyan Yang, Yanlin Qian, Francesco Cricri, Lixin Fan, Joni-Kristian Kamarainen

6 pages

Abstract: We introduced a high-resolution equirectangular panorama (360-degree, virtual reality) dataset for object detection and propose a multi-projection variant of YOLO detector. The main challenge with equirectangular panorama image are i) the lack of annotated training data, ii) high-resolution imagery and iii) severe geometric distortions of objects near the panorama projection poles. In this work, we solve the challenges by i) using training examples available in the "conventional datasets" (ImageNet and COCO), ii) employing only low-resolution images that require only moderate GPU computing power and memory, and iii) our multi-projection YOLO handles projection distortions by making multiple stereographic sub-projections. In our experiments, YOLO outperforms the other state-of-art detector, Faster RCNN and our multi-projection YOLO achieves the best accuracy with low-resolution input.

Submitted to arXiv on 21 May. 2018

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.