Selection from heaps, row-sorted matrices and $X+Y$ using soft heaps

Authors: Haim Kaplan, László Kozma, Or Zamir, Uri Zwick

20 pages, 4 figures

Abstract: We use soft heaps to obtain simpler optimal algorithms for selecting the $k$-th smallest item, and the set of~$k$ smallest items, from a heap-ordered tree, from a collection of sorted lists, and from $X+Y$, where $X$ and $Y$ are two unsorted sets. Our results match, and in some ways extend and improve, classical results of Frederickson (1993) and Frederickson and Johnson (1982). In particular, for selecting the $k$-th smallest item, or the set of~$k$ smallest items, from a collection of~$m$ sorted lists we obtain a new optimal "output-sensitive" algorithm that performs only $O(m+\sum_{i=1}^m \log(k_i+1))$ comparisons, where $k_i$ is the number of items of the $i$-th list that belong to the overall set of~$k$ smallest items.

Submitted to arXiv on 20 Feb. 2018

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.