Predicting Movie Genres Based on Plot Summaries
Authors: Quan Hoang
Abstract: This project explores several Machine Learning methods to predict movie genres based on plot summaries. Naive Bayes, Word2Vec+XGBoost and Recurrent Neural Networks are used for text classification, while K-binary transformation, rank method and probabilistic classification with learned probability threshold are employed for the multi-label problem involved in the genre tagging task.Experiments with more than 250,000 movies show that employing the Gated Recurrent Units (GRU) neural networks for the probabilistic classification with learned probability threshold approach achieves the best result on the test set. The model attains a Jaccard Index of 50.0%, a F-score of 0.56, and a hit rate of 80.5%.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.