Human-in-the-loop Artificial Intelligence

Authors: Fabio Massimo Zanzotto

Journal of Artificial Intelligence Research, 2019

Abstract: Little by little, newspapers are revealing the bright future that Artificial Intelligence (AI) is building. Intelligent machines will help everywhere. However, this bright future has a dark side: a dramatic job market contraction before its unpredictable transformation. Hence, in a near future, large numbers of job seekers will need financial support while catching up with these novel unpredictable jobs. This possible job market crisis has an antidote inside. In fact, the rise of AI is sustained by the biggest knowledge theft of the recent years. Learning AI machines are extracting knowledge from unaware skilled or unskilled workers by analyzing their interactions. By passionately doing their jobs, these workers are digging their own graves. In this paper, we propose Human-in-the-loop Artificial Intelligence (HIT-AI) as a fairer paradigm for Artificial Intelligence systems. HIT-AI will reward aware and unaware knowledge producers with a different scheme: decisions of AI systems generating revenues will repay the legitimate owners of the knowledge used for taking those decisions. As modern Robin Hoods, HIT-AI researchers should fight for a fairer Artificial Intelligence that gives back what it steals.

Submitted to arXiv on 23 Oct. 2017

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.