Effective Image Differencing with ConvNets for Real-time Transient Hunting
Authors: Nima Sedaghat, Ashish Mahabal
Abstract: Large sky surveys are increasingly relying on image subtraction pipelines for real-time (and archival) transient detection. In this process one has to contend with varying PSF, small brightness variations in many sources, as well as artifacts resulting from saturated stars, and, in general, matching errors. Very often the differencing is done with a reference image that is deeper than individual images and the attendant difference in noise characteristics can also lead to artifacts. We present here a deep-learning approach to transient detection that encapsulates all the steps of a traditional image subtraction pipeline -- image registration, background subtraction, noise removal, psf matching, and subtraction -- into a single real-time convolutional network. Once trained the method works lighteningly fast, and given that it does multiple steps at one go, the advantages for multi-CCD, fast surveys like ZTF and LSST are obvious.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.