Attentional Factorization Machines: Learning the Weight of Feature Interactions via Attention Networks

Authors: Jun Xiao, Hao Ye, Xiangnan He, Hanwang Zhang, Fei Wu, Tat-Seng Chua

7 pages, 5 figures

Abstract: Factorization Machines (FMs) are a supervised learning approach that enhances the linear regression model by incorporating the second-order feature interactions. Despite effectiveness, FM can be hindered by its modelling of all feature interactions with the same weight, as not all feature interactions are equally useful and predictive. For example, the interactions with useless features may even introduce noises and adversely degrade the performance. In this work, we improve FM by discriminating the importance of different feature interactions. We propose a novel model named Attentional Factorization Machine (AFM), which learns the importance of each feature interaction from data via a neural attention network. Extensive experiments on two real-world datasets demonstrate the effectiveness of AFM. Empirically, it is shown on regression task AFM betters FM with a $8.6\%$ relative improvement, and consistently outperforms the state-of-the-art deep learning methods Wide&Deep and DeepCross with a much simpler structure and fewer model parameters. Our implementation of AFM is publicly available at: https://github.com/hexiangnan/attentional_factorization_machine

Submitted to arXiv on 15 Aug. 2017

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.