A Practical Method for Solving Contextual Bandit Problems Using Decision Trees

Authors: Adam N. Elmachtoub, Ryan McNellis, Sechan Oh, Marek Petrik

Proceedings of the 33rd Conference on Uncertainty in Artificial Intelligence (UAI 2017)

Abstract: Many efficient algorithms with strong theoretical guarantees have been proposed for the contextual multi-armed bandit problem. However, applying these algorithms in practice can be difficult because they require domain expertise to build appropriate features and to tune their parameters. We propose a new method for the contextual bandit problem that is simple, practical, and can be applied with little or no domain expertise. Our algorithm relies on decision trees to model the context-reward relationship. Decision trees are non-parametric, interpretable, and work well without hand-crafted features. To guide the exploration-exploitation trade-off, we use a bootstrapping approach which abstracts Thompson sampling to non-Bayesian settings. We also discuss several computational heuristics and demonstrate the performance of our method on several datasets.

Submitted to arXiv on 14 Jun. 2017

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.