DeepMetabolism: A Deep Learning System to Predict Phenotype from Genome Sequencing

Authors: Weihua Guo, You Xu, Xueyang Feng

arXiv: 1705.03094v1 - DOI (q-bio.GN)
License: CC BY-SA 4.0

Abstract: Life science is entering a new era of petabyte-level sequencing data. Converting such big data to biological insights represents a huge challenge for computational analysis. To this end, we developed DeepMetabolism, a biology-guided deep learning system to predict cell phenotypes from transcriptomics data. By integrating unsupervised pre-training with supervised training, DeepMetabolism is able to predict phenotypes with high accuracy (PCC>0.92), high speed (<30 min for >100 GB data using a single GPU), and high robustness (tolerate up to 75% noise). We envision DeepMetabolism to bridge the gap between genotype and phenotype and to serve as a springboard for applications in synthetic biology and precision medicine.

Submitted to arXiv on 08 May. 2017

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.