Understanding Black-box Predictions via Influence Functions

Authors: Pang Wei Koh, Percy Liang

Abstract: How can we explain the predictions of a black-box model? In this paper, we use influence functions -- a classic technique from robust statistics -- to trace a model's prediction through the learning algorithm and back to its training data, identifying the points most responsible for a given prediction. Applying ideas from second-order optimization, we scale up influence functions to modern machine learning settings and show that they can be applied to high-dimensional black-box models, even in non-convex and non-differentiable settings. We give a simple, efficient implementation that requires only oracle access to gradients and Hessian-vector products. On linear models and convolutional neural networks, we demonstrate that influence functions are useful for many different purposes: to understand model behavior, debug models and detect dataset errors, and even identify and exploit vulnerabilities to adversarial training-set attacks.

Submitted to arXiv on 14 Mar. 2017

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.