eXpose: A Character-Level Convolutional Neural Network with Embeddings For Detecting Malicious URLs, File Paths and Registry Keys
Authors: Joshua Saxe, Konstantin Berlin
Abstract: For years security machine learning research has promised to obviate the need for signature based detection by automatically learning to detect indicators of attack. Unfortunately, this vision hasn't come to fruition: in fact, developing and maintaining today's security machine learning systems can require engineering resources that are comparable to that of signature-based detection systems, due in part to the need to develop and continuously tune the "features" these machine learning systems look at as attacks evolve. Deep learning, a subfield of machine learning, promises to change this by operating on raw input signals and automating the process of feature design and extraction. In this paper we propose the eXpose neural network, which uses a deep learning approach we have developed to take generic, raw short character strings as input (a common case for security inputs, which include artifacts like potentially malicious URLs, file paths, named pipes, named mutexes, and registry keys), and learns to simultaneously extract features and classify using character-level embeddings and convolutional neural network. In addition to completely automating the feature design and extraction process, eXpose outperforms manual feature extraction based baselines on all of the intrusion detection problems we tested it on, yielding a 5%-10% detection rate gain at 0.1% false positive rate compared to these baselines.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.