Quantum hyperentanglement and its applications in quantum information processing
Authors: Fu-Guo Deng, Bao-Cang Ren, Xi-Han Li
Abstract: Hyperentanglement is a promising resource in quantum information processing with its high capacity character, defined as the entanglement in multiple degrees of freedom (DOFs) of a quantum system, such as polarization, spatial-mode, orbit-angular-momentum, time-bin and frequency DOFs of photons. Recently, hyperentanglement attracted much attention as all the multiple DOFs can be used to carry information in quantum information processing fully. In this review, we present an overview of the progress achieved so far in the field of hyperentanglement in photon systems and some of its important applications in quantum information processing, including hyperentanglement generation, complete hyperentangled-Bell-state analysis, hyperentanglement concentration, and hyperentanglement purification for high-capacity long-distance quantum communication. Also, a scheme for hyper-controlled-not gate is introduced for hyperparallel photonic quantum computation, which can perform two controlled-not gate operations on both the polarization and spatial-mode DOFs and depress the resources consumed and the photonic dissipation.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.